

ELECTRICAL STEEL

Electrical steels have excellent electro-magnetic properties. There are two types of electrical steel: grain-oriented and non grain-oriented electrical steel. Today, as the needs to reduce energy loss are increasing sharply, demands for high quality electrical steel are also growing. POSCO produces 1 million tons of high quality electrical steel each year.

Contents

Pohang & Gwangyang steelworks	04
Manufacturing processes & equipment	06
Specification Specification	08
Main application	09
Grain-oriented electrical steel	10
Non-oriented electrical steel	16
Insulation coating & stress relief annealing	29
Surface condensation in relation to humidity and temperature	30
Relations among weight, outside diameter & width of coil	31
Major international standards	32
Packaging & marking	34

ELECTRICAL STEEL

Upon completion of its first-phase manufacturing facility in 1973, Pohang Steelworks, Korea's first integrated steel mill, was finally completed after 4 stages of construction at Young-il Bay in February 1981.

POSCO is capable of producing and processing a variety of carbon steels and stainless steels. The company's global competitiveness was further enhanced when we opened the world's first FINEX commercialization facility in May 2007.

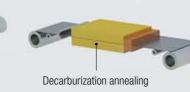
Main products hot-rolled steel, plate, cold-rolled steel, wire rod, electrical steel, stainless steel, API steel, etc.

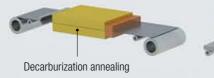
Crude steel production 16,185 million tons (as of 2013)

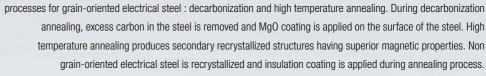
Gwangyang Steelworks is the world's largest integrated steel mill. It features an optimal plant layout with carbon steel processing and high-mill processing capabilities, producing automotive steel, high-strength hot rolled steel, high-quality API steel, and thick plates among other products.

With the goal of specializing in the manufacturing of the world's best automotive steels, Gwangyang Steelworks focuses on enhancing its competitive edge.

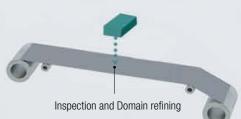
Main products hot-rolled steel, plate, cold-rolled steel, car steel, API steel, etc. **Crude steel production** 20,231 million tons (as of 2013)

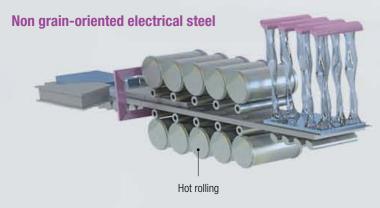

Manufacturing processes & equipment

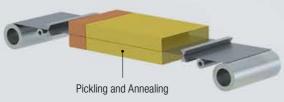

Cutting-edge facilities and state-of-art technologies enable us to meet customer's request for high quality products. Every process is controlled automatically to keep the best quality of products.

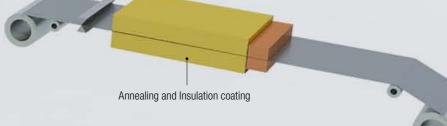

Grain-oriented electrical steel





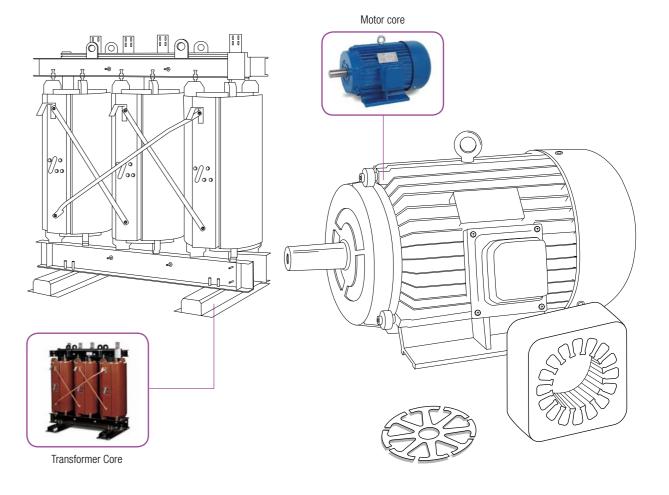

Annealing is a recrystallizing process of hardened cold rolled structures by heat treatment. There are two annealing


In this process, insulation coating is applied continuously to minimize eddy current losses, which are proportional to the sheet thickness. Grain-oriented electrical steel has two layers of coating; one is base coating with dark brown color which consists of Forsterite (Mg2SiO4), and the other is transparent insulation coating containing phosphates. For non grain-oriented electrical steel, there are various types of coating according to final usage and customer's requests.



High temperature annealing

Cold Rolling


In order to obtain specific thickness and material properties, cold rolling process should be conducted. For uniform thickness and width of strip, this process is controlled automatically.

		Gr	ain-Orient	ed			N	on-Oriente	ed		
						PN-Core		PNM-Core	PNA-Core	PNS-Core	PNF-Core
		PHD- Core	PH- Core	PG- Core	PN210 -400	PN440 -700	PN800 -1300	PNM500 -540	PNA300 -450	PNS250	PNF1500
	Large rotating machine			•	•					•	
Rotat	Medium rotating machine				•	•			•	•	
Rotating Machines	General use AC motor					•	•		•		•
	Compressor motor				•	•	•		•	•	
	Hybrid/Electric Vehicle motor				•					•	•
	Large size transformer	•	•	•							
	Small & medium size transformer	•	•	•	•						
	Distribution transformer	•	•	•							
Stat	Reactor & magnetic amplifier	•	•	•	•						
Static Machines	Small power transformer	•	•	•	•	•	•		•		
ines	Voltage transformer	•	•	•	•						
	Ballast stabilizer				•	•	•		•		
	Welding transformer					•					
	Magnetic switch core							•			

PG-Core

PG-core has excellent magnetic properties in the rolling direction. It is widely used for large or mid/small-size transformers.

■ Standard Size

Product	Crodo	Thickness in (mm)	Width i	n. (mm)	Internal diameter	
Fiduuct	Grade	Thickness in. (mm)	Available	Standard	in. (mm)	
	27PG 120	0.0400 (0.07)		39.37 (1000) 47.24 (1200)	20 (508)	
PG-Core	27PG 130	0.0106 (0.27)				
	30PG 120	0.0119 (0.20)	33.46~47.24			
	30PG 130	0.0118 (0.30)	(850~1200)		20 (300)	
	35PG 145	0.0138 (0.35)				
	35PG 155	0.0150 (0.55)				

Note) For non-standard sizes, please contact us.

■ Specification

POSCO Electrical Steel

10

Magnetic properties and lamination factors

Grain-oriented electrical steel

Grade	Equivalent ASTM	Density	Max Core Loss	, W/lb (W/kg)	Magnetic Flux	Lamination Factor,	
uraue	Grade	(kg/dm³)	1.7T/50Hz	1.7T/60Hz	Density.Min T(B8)	Min(%)	
27PG 120	27H074		0.54 (1.20)	0.74 (1.63)		95.0	
27PG 130	-	7.05	0.59 (1.30)	0.76 (1.67)	1.80		
30PG 120	-		0.54 (1.20)	0.74 (1.63)		05.5	
30PG 130	30H083	7.65	0.59 (1.30)	0.79 (1.73)		95.5	
35PG 145	-		0.66 (1.45)	0.92 (2.03)		96.0	
35PG 155	35H094		0.70 (1.55)	0.94 (2.07)		90.0	

Note) Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1). B8 indicates the magnetic flux density at 800A/m. Core loss and magnetic flux density are measured after stress relief annealing and speciemen is parallel to the rolling direction. (Annealing condition: 840°C, 1Hr, non-oxidation atmosphere)

■ Dimension & Shape Tolerance

Width Thickness in. (mm) in. (mm)		Thickness Tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width Tolerance in. (mm)	Camber (Length: 2m) in. (mm)	
	0.0106 (0.27)					
33.46 (850) and over	0.0118 (0.30)	±0.0012 (0.03)	0.0012 (0.03) and under	+0.0236 (0.6)	0.0394 (1.0) and under	
and over	0.0138 (0.35)					

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

Grade	Resistivity		Core Loss,	W/lb (W/kg)		Magnetic Flux Density.	
uraue	Ω·m (×10 ⁻⁸)	1.5T/50Hz	1.7T/50Hz	1.5T/60Hz	1.7T/60Hz	T(B8)	
27PG 120		0.35 (0.78)	0.52 (1.15)	0.46 (1.02)	0.67 (1.48)	1.85	
27PG 130		0.37 (0.82)	0.55 (1.22)	0.49 (1.07)	0.70 (1.55)	1.84	
30PG 120	48	0.38 (0.83)	0.53 (1.17)	0.49 (1.09)	0.69 (1.53)	1.85	
30PG 130	40	0.40 (0.87)	0.57 (1.25)	0.51 (1.12)	0.73 (1.61)	1.84	
35PG 145		0.44 (0.98)	0.62 (1.37)	0.59 (1.29)	0.82 (1.80)	1.84	
35PG 155		0.46 (1.01)	0.66 (1.45)	0.61 (1.33)	0.86 (1.89)	1.83	

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method. Specimen is parallel to the rolling direction and annealed for magnetic properties.

■Typical Mechanical Property and Lamination Factor

Thickness	Tensile Strength(N/mm²)		Yield Point(N/mm²)		Elonga	tion(%)	Hardness	Lamination
in. (mm)	L	C	L	C	L	C	Hv1	Factor(%)
0.0106 (0.27)	344	385	322	340	11	44	182	97.5
0.0118 (0.30)	345	412	330	350	12	49	180	98.0
0.0138 (0.35)	364	423	345	357	10	40	181	98.4

- 2. L: Specimen is parallel to the rolling direction / C: Specimen is transverse to the rolling direction.
- 3. Specimens with 0A coating are used for lamination factor test.

13

POSCO Electrical Steel

Grain-oriented electrical steel

PH-Core

Through highly advanced texture control technologies, PH-core has superior magentic properties. This is widely used for energy efficient transformer.

■ Standard Size

Product	Crada	Thickness in (mm)	Width i	n. (mm)	Inside diameter	
Product	Grade	Thickness in. (mm)	Available	Standard	mm (in.)	
	23PH 085				20 (508)	
	23PH 090	0.0091 (0.23)				
	23PH 095	(* /				
PH-Core	27PH 090		33.46~47.24	39.37 (1000)		
rn-cute	27PH 095	0.0106 (0.27)	(850~1200)	47.24 (1200)		
	27PH 100	()				
	30PH 100	0.0118				
	30PH 105	(0.30)				

Note) For non-standard sizes, please contact us

■ Specification

Magnetic properties and lamination factors

Grade	Equivalent ASTM	Density	Max Core Loss	, W/lb (W/kg)	Magnetic Flux	Lamination Factor,
uraue	Grade	(kg/dm³)	1.7T/50Hz	1.7T/60Hz	Density.Min T(B8)	Min(%)
23PH 085	-		0.39 (0.85)	0.53 (1.17)	1.88	
23PH 090	-		0.41 (0.90)	0.57 (1.26)		94.5
23PH 095	23P060		0.43 (0.95)	0.59 (1.28)		
27PH 090	-	7.65	0.41 (0.90)	0.56 (1.23)		95.0
27PH 095	-		0.43 (0.95)	0.59 (1.30)		
27PH 100	27P066		0.45 (1.00)	0.61 (1.35)		
30PH 100	-		0.45 (1.00)	0.64 (1.40)		95.5
30PH 105	-		0.48 (1.05)	0.66 (1.45)		

Note) Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1). B8 indicates the magnetic flux density at 800A/m. Core loss and magnetic flux density are measured after stress relief annealing and speciemen is parallel to the rolling direction. (Annealing condition: 840°C, 1Hr, non-oxidation atmosphere)

■ Dimension & Shape Tolerance

	Width Thickness in. (mm) in. (mm)		Thickness Tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width Tolerance in. (mm)	Camber (Length: 2m) in. (mm)	
	33.46 (850) and over	0.0091 (0.23)	±0.0008 (0.02)	±0.0008 (0.02)			
		0.0106 (0.27)	0.0010 (0.00)		+0.0236 (0.6)	0.0394 (1.0) & under	
	OVCI	0.0118 (0.30)	±0.0012 (0.03)	0.0012 (0.03) & under			

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

Grade	Resistivity		Core Loss, \	W/lb (W/kg)		Magnetic Flux Density.
uiauc	Ω·m (×10 ⁻⁸)	1.5T/50Hz	1.7T/50Hz	1.5T/60Hz	1.7T/60Hz	T(B8)
23PH 085		0.28 (0.62)	0.38 (0.83)	0.37 (0.81)	0.49 (1.09)	1.91
23PH 090		0.29 (0.64)	0.40 (0.88)	0.38 (0.84)	0.52 (1.14)	1.91
23PH 095		0.30 (0.65)	0.41 (0.90)	0.39 (0.86)	0.53 (1.17)	1.91
27PH 090	48	0.30 (0.67)	0.40 (0.88)	0.40 (0.88)	0.52 (1.16)	1.91
27PH 095	40	0.32 (0.70)	0.42 (0.93)	0.42 (0.92)	0.55 (1.22)	1.91
27PH 100		0.32 (0.71)	0.44 (0.96)	0.42 (0.93)	0.57 (1.26)	1.90
30PH 100	1	0.34 (0.74)	0.45 (0.99)	0.44 (0.98)	0.59 (1.29)	1.91
30PH 105		0.35 (0.76)	0.46 (1.01)	0.45 (1.00)	0.60 (1.33)	1.90

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method. Specimen is parallel to the rolling direction and annealed for magnetic properties.

■Typical Mechanical Property and Lamination Factor

Thickness	Tensile Strength(N/mm²)		Yield Point(N/mm²)		Elonga	tion(%)	Hardness	Lamination
in. (mm)	L	C	L	C	L	C	Hv1	Factor(%)
0.0091 (0.23)	381	424	356	383	14	42	183	97.0
0.0106 (0.27)	361	415	337	367	14	42	182	97.5
0.0118 (0.30)	345	412	330	358	16	45	184	98.0

- 2. L: Specimen is parallel to the rolling direction / C: Specimen is transverse to the rolling direction.
- 3. Specimens with 0A coating are used for lamination factor test.

POSCO Electrical Steel

Grain-oriented electrical steel

PHD-Core

PHD-core has excellent magnetic properties by domain refining technologies which can achieve significant loss reduction.

■ Standard Size

Product	Grade	Thickness in (mm)	Width i	n. (mm)	Inner diameter	
Product	uraue	Thickness in. (mm)	Available	Standard	in. (mm)	
	23PHD080			39.37 (1000) 47.24 (1200)		
	23PHD085	0.0091 (0.23)			20 (508)	
	23PHD090					
PHD-Core	27PHD085		33.46~47.24			
1112 0010	27PHD090	0.0106 (0.27)	(850~1200)			
	27PHD095					
	30PHD095	0.0119 (0.20)				
	30PHD100	0.0118 (0.30)				

Note) For non-standard sizes, please contact us

■ Specification

Magnetic properties and lamination factors

Grade	Equivalent ASTM	Density (kg/dm³)	Max Core Loss	, W/lb (W/kg)	Magnetic Flux Density.Min	Lamination Factor,
Grade	Grade		1.7T/50Hz	1.7T/60Hz	T(B8)	Min(%)
23PHD080	-		0.36 (0.80)	0.52 (1.14)		
23PHD085	-		0.39 (0.85)	0.53 (1.17)	1.88	94.5
23PHD090	23Q054		0.41 (0.90)	0.54 (1.19)		
27PHD085	-	7.65	0.39 (0.85)	0.53 (1.17)		
27PHD090	-		0.41 (0.90)	0.55 (1.22)		95.0
27PHD095	27Q057		0.43 (0.95)	0.57 (1.26)		
30PHD095	-		0.43 (0.95)	0.59 (1.30)		05.5
30PHD100	-		0.45 (1.00)	0.62 (1.36)		95.5

Note) 1. Above test is conducted in accordance with IEC60404-3 (or JIS C 2556-1996), using single sheet tester, without stress relief annealing.

- 2. Domain refining effect of PHD core will be nullified by annealing.
- 3. B8 indicates the magnetic flux density at 800A/m

■ Dimension & Shape Tolerance

_	Width in. (mm)	Thickness in. (mm)	Thickness Tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width Tolerance in. (mm)	Camber (Length: 2m) in. (mm)
•		0.0091 (0.23)	±0.0008 (0.02)	0.0008 (0.02) and under		0.0394 (1.0) and under
	33.46 (850) and over	0.0106 (0.27)	. 0.0012 (0.02)	0.0012 (0.03) and under	+0.0236 (0.6)	
	0101	0.0118 (0.30)	±0.0012 (0.03)			

 $\textbf{Note)} \ \text{Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.}$

■Typical Electrical and Magnetic Properties

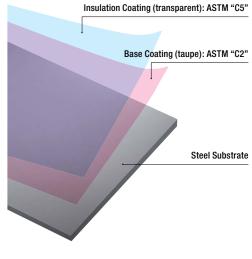
Grade	Resistivity		Core Loss, W/lb (W/kg)					
uraue	Ω∙m (×10⁻³)	1.5T/50Hz	1.7T/50Hz	1.5T/60Hz	1.7T/60Hz	Flux Density. T(B8)		
23PHD080		0.26 (0.57)	0.35 (0.77)	0.34 (0.75)	0.46 (1.01)	1.91		
23PHD085		0.27 (0.59)	0.36 (0.80)	0.35 (0.78)	0.48 (1.05)	1.91		
23PHD090		0.28 (0.62)	0.38 (0.83)	0.36 (0.80)	0.49 (1.09)	1.91		
27PHD085	48	0.28 (0.62)	0.37 (0.81)	0.38 (0.83)	0.48 (1.06)	1.91		
27PHD090	1	0.29 (0.64)	0.38 (0.84)	0.39 (0.86)	0.50 (1.10)	1.91		
27PHD095		0.30 (0.66)	0.41 (0.88)	0.39 (0.86)	0.54 (1.18)	1.91		
30PHD095		0.31 (0.68)	0.42 (0.93)	0.41 (0.91)	0.56 (1.23)	1.91		
30PHD100		0.32 (0.70)	0.43 (0.95)	0.42 (0.93)	0.57 (1.26)	1.91		

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC60404-3 (or JIS C 2556-1996) method, using as-sheared specimen which is parallel to the rolling direction, without stress relief annealing.

■Typical Mechanical Property and Lamination Factor

Thickness	Tensile Strength (N/mm²)		Yield Point(N/mm²)		Elongation(%)		Hardness	Lamination
in. (mm)	L	C	L	C	L	C	Hv1	Factor(%)
0.0091 (0.23)	381	424	356	383	14	42	183	97.0
0.0106 (0.27)	361	415	337	367	14	42	182	97.5
0.0118 (0.30)	345	412	330	358	16	45	184	98.0

Note) 1. Tests are conducted in accordance with JIS Z 2241 and 2244.


- 2. L: Specimen is parallel to the rolling direction / C: Specimen is transverse to the rolling direction.
- 3. Specimens with 0A coating are used for lamination factor test.

■Insulation Coating

	0A					
	ASTM Type					
	Inorganic (Phosphate Base)					
Film thickne	ss (Before SRA, µm)	2~5				
*Resistivity	Before SRA	15				
(Ω cm 2 /sheet)	After SRA	15				
Annea	ling(in N ₂ or DX rich gas)	Excellent				
Heat resistance	Continuous(155°C×24hr in Air.)	Not recogniozed				
(flaking after SRA)	Short(750°C×2hrs. in DX rich gas)	Not recogniozed				
Adhesion	Pipe bending	30 mmø				
(Before SRA)	*Cross cut	5B(Top level)				
Anti-	Corrosion / Weathering	Good				
	Excellent					
	Punchability	Excellent				

^{*} Tests are conducted in accordance with ASTM A 717. (SRA condition: 750°C $\,\times$ 2hrs, in DX rich gas.)

POSCO insulation coating.

PN-Core

Non-oriented electrical steel

Non grain-oriented electrical steel has homogeneous magnetic properties in all directions. They are used as core materials in

rotating machines, from tiny precision electric motors to large power generators.

Product	Grade	Thickness	Width i	n. (mm)	Inner diameter in.
Product	uraue	in. (mm)	Available	Standard	(mm)
35PN 210, 35PN 230, 35PN 250, 35PN	35PN 210, 35PN 230, 35PN 250, 35PN 270, 35PN 300	0.0138 (0.35)			
	50PN 250, 50PN 270, 50PN 290, 50PN 310, 50PN 350	0.0197 (0.50)	37.40~47.24 (950~1200)		
	65PN 310, 65PN 350 0.0256 (0.65)				
PN-Core	35PN 360, 35PN 440	0.0138 (0.35)		39.37 (1000) 43.31 (1100) 47.24 (1200)	20 (508)
	50PN 400, 50PN 470, 50PN 600, 50PN 700, 50PN 800, 50PN 1000, 50PN 1300	0.0197 (0.50)	37.40~49.21 (950~1250)		
	65PN 400, 65PN 470, 65PN 600, 65PN 700, 65PN 800, 65PN 1000, 65PN 1300	0.0256 (0.65)	(330-71230)		

Note) For non-standard sizes, please contact us

■ Dimension & Shape Tolerance

	Width in. (mm)	Thickness in. (mm)	Thickness Tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width Tolerance in. (mm)	Camber (Length: 2m) in. (mm)
		0.0138 (0.35)	±0.00138(0.035)	0.0008 (0.02) and under		
	39.37 (1000) and over	0.0197 (0.50)	±0.00158(0.040)	0.0012 (0.03) and under	+0.0591 (1.5)	0.0394 (1.0) and under
OVCI		0.0256 (0.65)	±0.00205(0.052)	0.0016 (0.04) and under		

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■ Specification

Magnetic properties and lamination factors

Grade	Equivalent ASTM Grade	Density (kg/dm³)	Max Core Loss 1.5T/50Hz	s, W/lb (W/kg) 1.5T/60Hz	Magnetic Flux - Density.Min T(B50)	Lamination Facto Min(%)
35PN 210	-	7.60	0.95 (2.10)	1.20 (2.63)	1.61	
35PN 230	-	7.60	1.04 (2.30)	1.30 (2.86)	1.61	
35PN 250	36F145	7.60	1.13 (2.50)	1.42 (3.12)	1.62	
35PN 270	36F155	7.65	1.23 (2.70)	1.53 (3.37)	1.62	95.0
35PN 300	36F175	7.65	1.36 (3.00)	1.69 (3.72)	1.62	
35PN 330	36F185	7.65	1.50 (3.30)	1.85 (4.08)	1.62	
35PN 360	36F205	7.65	1.63 (3.60)	2.01 (4.42)	1.63	
35PN 440	-	7.70	2.00 (4.40)	2.44 (5.37)	1.65	
50PN 250	-	7.60	1.13 (2.50)	1.46 (3.22)	1.62	
50PN 270	-	7.60	1.23 (2.70)	1.57 (3.46)	1.62	
50PN 290	47F165	7.60	1.32 (2.90)	1.67 (3.69)	1.62	
50PN 310	47F180	7.65	1.41 (3.10)	1.79 (3.95)	1.62	00.0
50PN 330	47F190	7.65	1.50 (3.30)	1.87 (4.12)	1.62	
50PN 350	47F200	7.65	1.59 (3.50)	1.97 (4.34)	1.62	
50PN 400	47F240	7.65	1.81 (4.00)	2.30 (5.07)	1.63	96.0
50PN 470	47F280	7.70	2.13 (4.70)	2.70 (5.94)	1.64	
50PN 600	-	7.75	2.72 (6.00)	3.39 (7.47)	1.66	
50PN 700	47F400	7.80	3.18 (7.00)	3.95 (8.72)	1.70	
50PN 800	47F450	7.85	3.63 (8.00)	4.53 (9.99)	1.70	
50PN 1000	-	7.85	4.54 (10.0)	5.90 (13.0)	1.70	
50PN 1300	-	7.85	5.90 (13.0)	7.33 (16.2)	1.70	
65PN 310	-	7.60	1.41 (3.10)	1.82 (4.01)	1.62	
65PN 350	64F200	7.60	1.59 (3.50)	2.03 (4.48)	1.62	
65PN 400	64F235	7.65	1.81 (4.00)	2.35 (5.18)	1.65	
65PN 470	64F275	7.70	2.13 (4.70)	2.72 (6.00)	1.65	
65PN 600	64F320	7.75	2.72 (6.00)	3.47 (7.66)	1.66	97.0
65PN 700	-	7.80	3.18 (7.00)	4.11 (9.06)	1.70	
65PN 800	64F500	7.85	3.63 (8.00)	4.65 (10.2)	1.70	
65PN 1000	64F550	7.85	4.54 (10.0)	5.96 (13.2)	1.70	
65PN 1300	-	7.85	5.90 (13.0)	7.38 (16.3)	1.70	

POSCO Electrical Steel

17

Note) 1. Above test is conducted in accordance with IEC 60404-2 (or JIS C 2550-1), using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

^{2.} W15/50 indicates the core loss at the frequency of 50 Hz and the magnetic flux density of 1.5T.

^{3.} B50 indicates the magnetic flux density at 5000A/m

Core Loss, W/lb (W/kg) Magnetic Flux Density, (T) Resistivity Grade Ω·m (×10-8) 1.0T/50Hz 1.5T/50Hz 1.0T/60Hz 1.5T/60Hz B50 35PN 210 59 0.38 (0.84) 0.93 (2.04) 0.47 (1.03) 1.15 (2.53) 1.56 1.65 59 0.40 (0.89) 0.49 (1.07) 1.18 (2.60) 1.57 35PN 230 0.95 (2.10) 1.66 0.43 (0.96) 55 1.02 (2.25) 0.53 (1.17) 1.29 (2.85) 1.57 1.66 35PN 250 52 0.46 (1.02) 1.09 (2.40) 0.58 (1.28) 1.58 1.67 35PN 270 1.36 (3.00) 35PN 300 45 0.49 (1.08) 1.15 (2.53) 0.63 (1.38) 1.44 (3.18) 1.59 1.69 45 0.52 (1.14) 1.59 35PN 330 1.18 (2.60) 0.64 (1.42) 1.47 (3.24) 1.69 45 0.57 (1.25) 1.27 (2.80) 0.70 (1.55) 1.57 (3.45) 1.59 1.69 35PN 360 42 0.63 (1.39) 1.40 (3.08) 0.79 (1.73) 1.73 (3.82) 1.62 1.71 35PN 440 50PN 250 59 0.45 (1.00) 1.08 (2.37) 0.59 (1.31) 1.40 (3.08) 1.67 50PN 270 59 0.48 (1.05) 1.14 (2.50) 0.61 (1.35) 1.46 (3.22) 1.57 1.67 50PN 290 56 0.50 (1.09) 1.18 (2.60) 0.65 (1.45) 1.52 (3.35) 1.58 1.67 50PN 310 53 0.55 (1.21) 1.23 (2.70) 0.70 (1.55) 1.57 (3.46) 1.59 1.68 50PN 330 50 0.57 (1.26) 1.28 (2.82) 0.72 (1.59) 1.63 (3.60) 1.60 1.69 50PN 350 50 0.59 (1.30) 1.33 (2.93) 0.74 (1.63) 1.70 (3.74) 1.60 1.69 45 0.64 (1.41) 1.44 (3.18) 0.83 (1.82) 1.82 (4.01) 1.61 1.70 50PN 400 42 0.74 (1.64) 1.61 (3.55) 0.94 (2.06) 2.07 (4.56) 1.61 1.70 50PN 470 34 0.90 (1.98) 2.00 (4.40) 1.13 (2.49) 2.56 (5.63) 1.62 1.71 50PN 600 30 1.19 (2.62) 2.52 (5.55) 1.50 (3.30) 3.19 (7.03) 1.64 1.72 50PN 700 17 1.33 (2.93) 2.84 (6.26) 1.65 (3.63) 3.60 (7.94) 1.66 1.74 50PN 800 50PN 1000 17 1.45 (3.20) 3.09 (6.80) 1.86 (4.10) 3.91 (8.62) 1.67 1.75 50PN 1300 17 1.70 (3.75) 3.43 (7.56) 2.16 (4.75) 4.33 (9.54) 1.67 1.75 59 0.58 (1.27) 1.34 (2.95) 0.75 (1.65) 1.74 (3.83) 1.57 1.65 65PN 310 65PN 350 59 0.64 (1.40) 1.45 (3.20) 0.82 (1.80) 1.87 (4.12) 1.58 1.66 0.74 (1.63) 1.70 65PN 400 45 1.68 (3.70) 1.01 (2.23) 2.20 (4.85) 1.62 42 0.87 (1.91) 1.89 (4.16) 1.18 (2.59) 2.47 (5.45) 65PN 470 1.62 1.70 34 1.03 (2.27) 2.33 (5.14) 1.40 (3.09) 3.03 (6.68) 1.63 1.72 65PN 600 2.94 (6.47) 30 1.37 (3.02) 65PN 700 1.84 (4.06) 3.78 (8.33) 1.65 1.73 17 1.53 (3.38) 2.07 (4.56) 1.67 1.75 65PN 800 3.30 (7.28) 4.26 (9.39) 65PN 1000 17 1.65 (3.64) 3.57 (7.86) 2.27 (5.00) 4.60 (10.1) 1.68 1.75 17 65PN 1300 1.96 (4.32) 4.00 (8.79) 2.65 (5.83) 1.75 5.13 (11.3) 1.68

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

■Typical Mechanical Property and Lamination Factor

Grade	Tensile Stre	ngth(N/mm²)	Yield Poir	nt(N/mm²)	Elonga	tion(%)	Hardness Hv1	Lamination Factor(%)
	L	С	L	С	L	С		1 40101(70)
35PN 210	538	547	415	427	18	19	220	
35PN 230	535	545	393	403	19	20	216	
35PN 250	522	539	370	385	19	21	214	
35PN 270	467	485	347	361	21	23	190	97.5
35PN 300	456	469	336	351	21	23	188	07.0
35PN 330	453	469	340	355	22	24	175	
35PN 360	450	470	350	366	23	25	170	
35PN 440	405	415	273	285	27	29	161	
50PN 250	550	570	413	426	20	22	223	
50PN 270	535	550	406	460	22	23	205	
50PN 290	510	530	370	386	23	25	195	
50PN 310	483	505	355	361	25	28	189	
50PN 330	475	492	348	358	25	28	190	
50PN 350	470	489	344	354	25	28	189	
50PN 400	465	482	352	365	27	30	183	98.0
50PN 470	415	420	275	285	34	36	160	
50PN 600	395	405	268	278	37	39	130	
50PN 700	385	395	270	280	38	39	120	
50PN 800	375	385	270	280	39	40	115	
50PN 1000	370	380	265	275	40	41	113	
50PN 1300	350	360	250	260	40	41	105	
65PN 310	540	543	411	415	21	20	225	
65PN 350	522	531	410	413	15	14	222	
65PN 400	479	510	370	380	31	30	180	
65PN 470	425	440	300	315	35	36	146	
65PN 600	395	430	278	288	37	38	130	98.0
65PN 700	386	405	273	285	39	41	121	
65PN 800	375	385	270	280	40	41	113	
65PN 1000	370	380	265	275	41	42	110	
65PN 1300	350	360	250	260	41	42	110	

- 2. L: Specimen is parallel to the rolling direction / C: Specimen is transverse to the rolling direction.
- 3. Specimens with C-6A coating are used for lamination factor test.

____ 20

Non-oriented electrical steel

PNM-Core

PNM-Core has a improved wear resistance and low residual magnetism. This product is suitable for magnetic switches.

■ Standard Size

	Product	Cuada	Thislenges in (mm)	Width in	Inner diameter		
	Product	Grade	Thickness in. (mm)	Available	Standard	in. (mm)	
	DAIM Core	65PNM540	0.0256 (0.65)	37.40~47.24	39.37 (1000) 43.31 (1100)	20 (508)	
	PNM-Core	70PNM500	0.0276 (0.70)	(950~1200)	47.24 (1200)	20 (506)	

Note) For non-standard sizes, please contact us

■ Specification

Magnetic properties and lamination factors

Grade	Equivalent ASTM	Density	Max Core Loss,	W/lb (W/kg)	Magnetic Flux	Lamination Factor,	
uraue	Grade	(kg/dm³)	1.5T/50Hz	1.5T/60Hz	Density.Min T(B50)	Min(%)	
65PNM540	-	7.70	2.45 (5.40)	3.10 (6.82)	1.66	97.0	
70PNM500	-	7.65	2.27 (5.00)	2.89 (6.37)	1.65	97.0	

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1), using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

- 2. W15/50 indicates the core loss at the frequency of 50 Hz and the magnetic flux density of 1.5T.
- 3. B50 indicates the magnetic flux density at 5000A/m

■ Dimension & Shape Tolerance

Width in. (mm)	Thickness in. (mm)	Thickness tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width tolerance in. (mm)	Camber (Length: 2m) in. (mm)	
39.37 (1000)	0.0256 (0.65)	±0.00205 (0.052)	0.0016 (0.04)	. 0.0504 (4.5)	0.0394 (1.0)	
and over	0.0276 (0.70)	±0.00221 (0.056)	and under	+0.0591 (1.5)	and under	

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

Grade	Resistivity		Core Loss,	Magnetic Flux Density, (T)			
	Ω∙m (×10 ⁻⁸)	1.0T/50Hz	1.5T/50Hz	1.0T/60Hz	1.5T/60Hz	B25	B50
65PNM540	42	0.82 (1.80)	1.69 (3.72)	1.03 (2.27)	2.18 (4.81)	1.65	1.72
70PNM500	44	0.78 (1.72)	1.65 (3.63)	0.99 (2.18)	2.17 (4.78)	1.61	1.70

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

■Typical Mechanical Property and Lamination Factor

Overdo		Tensile Strength(N/mm²)		Yield Point(N/mm²)		Elongation(%)		Hardness	Lamination
Grade	L	C	L	C	L	C	Hv1	Factor(%)	
	65PNM540	437	452	300	315	32	33	155	98.0
	70PNM500	485	496	356	371	31	32	177	96.0

Note) 1. Tests are conducted in accordance with JIS Z 2241 and 2244.

- 2. L : Specimen is parallel to the rolling direction / C : Specimen is transverse to the rolling direction
- 3. Specimens with C-6A coating are used for lamination factor test.

PNX Core

PNX-Core is optimized core for traction motor in electrical vehicle(EV), hybrid electrical vehicle(HEV). It has low core loss at high frequencies, high magnetic flux density and has high mechanical strength for excellent endurance.

■ Standard Size

	Product	Grade	Thickness in (mm)	Width	in. (mm)	Inner diameter
	riouuct	Graue	Thickness in. (mm)	Available	Standard	in. (mm)
	PNX-Core	27PNX1350F	0.0106(0.27)	37.40~41.34(950~1050)	37.40(950) / 39.37(1000)	20(508)

Note) For non-standard sizes, please contact us

■ Specification

Magnetic properties and lamination factors

1	Grade	Equivalent ASTM Grade	Density (kg/dm³)	Max Core Loss, W/lb (W/kg) 1.0T/400Hz	Min. Yield Point (N/mm²)	Magnetic Flux Density.Min T(B50)	Lamination Factor, Min(%)
	27PNX1350F	-	7.60	6.12 (13.5)	400	1.65	94.0

POSCO Electrical Steel

21

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1), using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

- 2. W10/400 indicates the core loss at the frequency of 400 Hz and magnetic flux density of 1.0T.
- 3. B50 indicates the magnetic flux density at 5000A/m

■ Dimension & Shape Tolerance

Width in. (mm)	Thickness in. (mm)	Thickness tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width tolerance in. (mm)	Camber (Length: 2m) in. (mm)
39.37(1000) and under	0.0106(0.27)	±0.00106(0.027)	0.0008(0.02) and under	+0.0591(1.5)	0.0394(1.0)and under

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

Grade	Crado	Resistivity Ω·m (×10 ⁻⁸)	Core Loss, W/lb (W/kg)					Magnetic Flux Density, (T)	
	uraue		1.0T/50Hz	1.5T/50Hz	1.0T/60Hz	1.5T/60Hz	1.0T/400Hz	B25	B50
	27PNX1350F	59	0.38 (0.84)	0.90 (1.99)	0.47 (1.03)	1.11 (2.44)	5.81 (12.8)	1.57	1.66

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

■Typical Mechanical Property and Lamination Factor

Overde	Tensile Stre	ngth (N/mm²)	Yield Point(N/mm²)		Elongation(%)		Hardness	Lamination
Grade	L	C	L	C	L	C	Hv1	Factor(%)
27PNX1350F	545	556	420	432	16	16	220	97.0

- 2. L : Specimen is parallel to the rolling direction / C : Specimen is transverse to the rolling direction
- 3. Specimens with C-6A coating are used for lamination factor test.

Non-oriented electrical steel

PNF-Core

PNF-Core has excellent magnetic properties at high frequencies. It is suitable for motors which needs low core loss at high frequencies.

■ Standard Size

Product	Grade	Thickness in (mm)	Width i	Inner diameter		
Fiouuct	uraue	Thickness in. (mm)	Available	Standard	in. (mm)	
	20PNF1500	0.0080 (0.20)		39.37 (1000) 43.31 (1100)		
PNF-Core	30PNF1600	0.0118 (0.30)	37.40~47.24 (950~1200)		20 (508)	
	35PNF1800	0.0138 (0.35)				

Note) For non-standard sizes, please contact us

■ Specification

Magnetic properties and lamination factors

Grade	Grade Equivalent ASTM Grade		Max Core Loss, W/lb (W/kg) 1.0T/400Hz	Magnetic Flux Density.Min T(B50)	Lamination Factor, Min(%)
20PNF1500	-	7.65	6.80 (15.0)	1.62	93.0
30PNF1600	-	7.60	7.26 (16.0)	1.62	94.5
35PNF1800	-	7.60	8.17 (18.0)	1.62	95.0

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1), using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

- 2. W10/400 indicates the core loss at the frequency of 400 Hz and magnetic flux density of 1.0T.
- 3. B50 indicates the magnetic flux density at 5000A/m

■ Dimension & Shape Tolerance

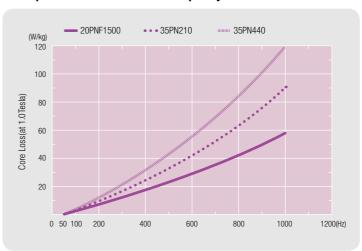
Width in. (mm)	Thickness in. (mm)	Thickness Tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width Tolerance in. (mm)	Camber (Length: 2m) in. (mm)
39.37 (1000) and under	0.0080 (0.20) 0.0118 (0.30) 0.0138 (0.35)	±0.0008 (0.020) ±0.0012 (0.030) ±0.0014 (0.035)	0.0008 (0.02) and under	0.0504 (4.5)	0.0394 (1.0)
39.37 (1000) and over	0.0080 (0.20) 0.0118 (0.30) 0.0138 (0.35)	±0.0008 (0.020) ±0.0012 (0.030) ±0.0014 (0.035)	0.0012 (0.03) and under	+0.0591 (1.5)	and under

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

Grade	Grade Resistivity		C	Magnetic Flux Density. (T)				
	Ω•m (×10-8)	1.0T/50Hz	1.5T/50Hz	1.0T/60Hz	1.5T/60Hz	1.0T/400Hz	B25	B50
20PNF1500	50	0.56 (1.24)	1.23 (2.71)	0.69 (1.53)	1.49 (3.28)	5.76 (12.8)	1.57	1.66
30PNF1600	59	0.42 (0.93)	0.98 (2.16)	0.53 (1.17)	1.23 (2.72)	6.71 (14.8)	1.56	1.66
35PNF1800	59	0.44 (0.97)	0.99 (2.19)	0.54 (1.20)	1.24 (2.73)	7.67 (16.9)	1.56	1.66

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.


■Typical Mechanical Property and Lamination Factor

Grade	Tensile Stre	ngth(N/mm²)	Yield Poir	nt(N/mm²)	Elonga	tion(%)	Hardness	Lamination	
ч	L	C	L	C	L	C	Hv1	Factor(%)	
20PNF1500	471	490	363	381	16	19	195	97.0	
30PNF1600	535	545	416	426	18	19	223	97.5	
35PNF1800	536	546	418	428	19	20	224	97.5	

Note) 1. Tests are conducted in accordance with JIS Z 2241 and 2244.

- 2. L : Specimen is parallel to the rolling direction / C : Specimen is transverse to the rolling direction
- 3. Specimens with C-6A coating are used for lamination factor test.

■ Comparison of Core Loss with Frequency

PNF-Core of 0.20mm has lower iron loss than 0.35mm product due to less eddy current loss in high frequency. 20PNF1500 has 30% improved magnetic properties(W10/400) compared to 35PN 210.

Non-oriented electrical steel

PNA-Core

PNA-Core has low core loss, high induction and good punchability after SRA(Stress Relief Anealing).

Product	Grade	Thickness in (mm)	Width i	n. (mm)	Inside diameter	
Floudet	uraue	Thickness in. (mm)	Available	Standard	in. (mm)	
	50PNA300			39.37 (1000) 43.31 (1100) 47.24 (1200)		
PNA-Core	50PNA350	0.0107 (0.50)	37.40~47.24		20 (508)	
	50PNA450	0.0197 (0.50)	(950~1200)			
	50PNA500					

Note) For non-standard sizes, please contact us

■ Specification

Magnetic properties and lamination factors

Grade	Equivalent ASTM	Density	Max Core Loss	, W/lb (W/kg)	Magnetic Flux Density.Min	Lamination Factor,
uraue	Grade	(kg/dm³)	1.5T/50Hz	1.5T/60Hz	T(B50)	Min(%)
50PNA300	-	7.75	1.36 (3.00)	1.75 (3.86)	1.70	
50PNA350	-	7.75	1.59 (3.50)	2.03 (4.48)	1.70	96.0
50PNA450	-	7.80	2.04 (4.50)	2.62 (5.79)	1.70	90.0
50PNA500	-	7.85	2.27 (5.00)	2.95 (6.49)	1.70	

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1), using specimens one half parallel and one half transverse to the rolling direction. Core loss and magnetic flux density are measured after stress relief annealing. (Annealing condition: 750°C×2hrs, under non-oxidation atmosphere)

2. W15/50 indicates the core loss at the frequency of 50 Hz and magnetic flux density of 1.5T. B50 indicates the magnetic flux density at 5000A/m.

■ Dimension & Shape Tolerance

Width in. (mm)	Thickness in. (mm)	Thickness tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width tolerance in. (mm)	Camber(Length : 2m) in. (mm)	
39.37 (1000) and under	0.0197 (0.50)	±0.00158 (0.040)	0.0012 (0.03) and under	+0.0591 (1.5)	0.0394 (1.0)	
39.37 (1000) and over	(0.50)		0.0016 (0.04) and under	+0.0391 (1.3)	and under	

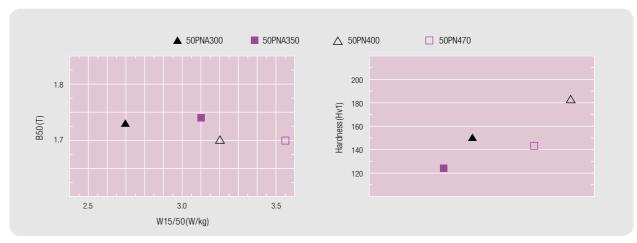
Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

Grade	Resistivity Ω•m		Core Loss,		Magnetic Flux Density. (T)		
	(×10 ⁻⁸)	1.0T/50Hz	1.5T/50Hz	1.0T/60Hz	1.5T/60Hz	B25	B50
50PNA300	37	0.59 (1.29)	1.35 (2.70)	0.78 (1.72)	1.68 (3.71)	1.65	1.73
50PNA350	33	0.62 (1.36)	1.38 (3.05)	0.83 (1.83)	1.77 (3.91)	1.67	1.74
50PNA450	20	0.79 (1.73)	1.77 (3.89)	1.01 (2.22)	2.32 (5.11)	1.63	1.72
50PNA500	17	0.85 (1.88)	2.02 (4.46)	1.09 (2.41)	2.66 (5.86)	1.64	1.72

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, after stress relief annealing. (Annealing conditions: 750°C (1380°F) × 2hrs, under neutral atmosphere)

■Typical Mechanical Property and Lamination Factor


Crada	Tensile Stre	Tensile Strength(N/mm²)		nt(N/mm²)	Elonga	tion(%)	Hardness	Lamination	
Grade	L	C	L	C	L	С	Hv1	Factor(%)	
50PNA300	402	415	260	269	37	39	141		
50PNA350	382	401	268	278	36	38	124	98.0	
50PNA450	372	381	269	270	37	38	117	90.0	
50PNA500	376	382	270	272	37	38	113		

POSCO Electrical Steel

Note) 1. Tests are conducted in accordance with JIS Z 2241 and 2244.

- 2. L : Specimen is parallel to the rolling direction / C : Specimen is transverse to the rolling direction
- 3. Specimens with C-6A coating are used for lamination factor test.

■ Comparison of magnetic properties and puchability (PNA VS PN-Core)

Through higher induction and punchability, PNA-core features higher efficiency of products and longer life of dies.

<u>tte</u> —

Non-oriented electrical steel

PNH-Core

PNH-Core has superior induction property than other non grain-oriented cores. It is widely used for industrial motors.

■ Standard Size

Product	Grade	Thickness in (mm)	Width i	Inside diameter		
Product	uraue	Thickness in. (mm)	Available	Standard	in. (mm)	
	23PNH270	0.0091 (0.23)		39.37 (1000) 43.31 (1100) 47.24 (1200)	20 (508)	
	35PNH230	0.0120 (0.25)				
PNH-Core	35PNH250	0.0138 (0.35)	37.40~47.24			
PNH-Core	50PNH300	0.0107 (0.50)	(950~1200)			
	50PNH470	0.0197 (0.50)				
	65PNH470	0.0256 (0.65)				

Note) For non-standard sizes, please contact us

■ Specification

Magnetic properties and lamination factors

Grade	Equivalent ASTM	Density	Max Core Loss	, W/lb (W/kg)	Magnetic Flux	Lamination Factor,	
uraue	Grade	(kg/dm³)	1.5T/50Hz	1.5T/60Hz	Density.Min T(B50)	Min(%)	
23PNH270	-	7.75	1.23 (2.70)	1.51 (3.32)	1.70	93.0	
35PNH230	-	7.65	1.04 (2.30)	1.30 (2.87)	1.65	05.0	
35PNH250	-	7.65	1.13 (2.50)	1.41 (3.11)	1.67	95.0	
50PNH300	-	7.70	1.36 (3.00)	1.75 (3.85)	1.67		
50PNH470	-	7.75	2.13 (4.70)	2.67 (5.89)	1.72	96.0	
65PNH470	-	7.75	2.13 (4.70)	2.76 (6.08)	1.72	97.0	

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1), using as-sheared specimens taken one half longitudinal and one half transverse to the rolling direction.

- 2. W15/50 indicates the core loss at the frequency of 50 Hz and the magnetic flux density of 1.5T.
- 3. B50 indicates the magnetic flux density at 5000A/m

■ Dimension & Shape Tolerance

_	Width in. (mm)	Thickness in. (mm)	Thickness tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width tolerance in. (mm)	Camber(Length : 2m) in. (mm)	
		0.0091 (0.23)	±0.00091 (0.023)	0.0008 (0.02) and under			
	39.37 (1000)	0.0138 (0.35)	±0.00138 (0.035)		+0.0591 (1.5)	0.0394 (1.0) and under	
	and over	0.0197 (0.50)	±0.00158 (0.040)	0.0016 (0.04) and under			
		0.0256 (0.65)	±0.00205 (0.052)				

Note) Thickness deviation in width means the gap between the thickness of center and the one section 15mm away from the edge part.

■Typical Electrical and Magnetic Properties

Grade	Resistivity		Core Loss, \	Magnetic Flux Density. (T)			
uiaue	Ω·m (×10 ⁻⁸)	1.0T/50Hz	1.5T/50Hz	1.0T/60Hz	1.5T/60Hz	B25	B50
23PNH270	34	0.57 (1.26)	1.21 (2.68)	0.70 (1.54)	1.49 (3.28)	1.65	1.74
35PNH230	49	0.41 (0.90)	0.93 (2.06)	0.52 (1.14)	1.17 (2.58)	1.57	1.68
35PNH250	46	0.49 (1.08)	1.07 (2.36)	0.61 (1.35)	1.35 (2.97)	1.57	1.68
50PNH300	42	0.52 (1.16)	1.17 (2.58)	0.67 (1.48)	1.55 (3.41)	1.63	1.71
50PNH470	34	0.66 (1.46)	1.45 (3.19)	0.85 (1.87)	1.86 (4.10)	1.65	1.74
65PNH470	34	0.85 (1.88)	1.84 (4.05)	1.09 (2.41)	2.40 (5.30)	1.65	1.74

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

■Typical Mechanical Property and Lamination Factor

Cuada	Tensile Stre	ngth(N/mm²)	Yield Poir	ıt(N/mm²)	Elonga	tion(%)	Hardness	Lamination
Grade	L	C	L	C	L	C	Hv1	Factor(%)
23PNH270	400	411	264	277	24	26	156	97.0
35PNH230	485	488	363	369	13	13	205	07.5
35PNH250	477	487	359	372	18	19	194	97.5
50PNH300	456	467	330	346	27	29	191	
50PNH470	386	398	245	256	34	36	140	98.0
65PNH470	392	395	252	258	35	36	141	

- 2. L : Specimen is parallel to the rolling direction / C : Specimen is transverse to the rolling direction
- 3. Specimens with C-6A coating are used for lamination factor test.

Non-oriented electrical steel

PNS-Core

PNS-Core has less strength than normal hyper grade PN-Core(≤2.5W/kg). It has excellent punchability so that customers can increase life cycle of mold.

■ Standard Size

Product	Crado	Thickness in (mm)	Width i	Inside diameter	
Product	Grade	Thickness in. (mm)	Available	Standard	in. (mm)
PNS-Core	35PNS250	0.0138 (0.35)	37.40~47.24 (950~1200)	39.37 (1000) 41.34 (1050) 43.31 (1100)	20 (508)

Note) For non-standard sizes, please contact us

■ Specification

Magnetic properties and lamination factors

Grade	Equivalent ASTM		Max Core Loss	, W/lb (W/kg)	Magnetic Flux Densitv.Min	Lamination Factor,	
uraue	Grade	(kg/dm³)	1.5T/50Hz	1.5T/60Hz	T(B50)	Min(%)	
35PNS250	-	7.60	1.13 (2.50)	1.42 (3.13)	1.63	95.0	

Note) 1. Above test is conducted in accordance with IEC60404-2 (or JIS C 2550-1), using as-sheared specimens taken one half longitudinal and one half transverse to the rolling direction.

- 2. W15/50 indicates the core loss at the frequency of 50 Hz and the magnetic flux density of 1.5T.
- 3. B50 indicates the magnetic flux density at 5000A/m

■ Dimension & Shape Tolerance

Width in. (mm)	Thickness in. (mm)	Thickness Tolerance in. (mm)	Thickness deviation in Width in. (mm)	Width tolerance in. (mm)	Camber(Length : 2m) in. (mm)
39.37 (1000) and under	0.0138 (0.35)	±0.00138 (0.035)	0.0008 (0.02) and under	+0.0591 (1.5)	0.0394 (1.0)
39.37 (1000) and over	0.0138 (0.35)	±0.00138 (0.035)	0.0012 (0.03) and under	+0.0331 (1.3)	and under

Note) Thickness deviation in transverse direction is the difference between the thickness of center and 15mm from the edge.

■Typical Electrical and Magnetic Properties

Grade	Resistivity		Core Loss, \	Magnetic Flux Density. (T)			
urauc	Ω•m (×10 ⁻⁸)	1.0T/50Hz	1.5T/50Hz	1.0T/60Hz	1.5T/60Hz	B25	B50
35PNS250	56	0.45 (0.98)	1.02 (2.25)	0.55 (1.22)	1.29 (2.83)	1.57	1.66

Note) Above values are not guaranteed. Tests are conducted in accordance with IEC 60404-2 (or JIS C 2550-1) method, using as-sheared specimens taken one half parallel and one half transverse to the rolling direction.

■Typical Mechanical Property and Lamination Factor

Crada	Tensile Strength(N/mm²)		Yield Point(N/mm²)		Elongation(%)		Hardness	Lamination
Grade	L	C	L	C	L	C	Hv1	Factor(%)
35PNS250	442	445	330	332	23	25	186	97.5

Note) 1. Tests are conducted in accordance with JIS Z 2241 and 2244.

- 2. L : Specimens taken parallel to the rolling direction / C : Specimens taken transverse to the rolling direction
- 3. Specimens with C-6A coating are used for lamination factor test.

Insulation coating & stress relief annealing

■POSCO insulation coating

	_	General (Chr	omate base)	Eco-frie	ndly (Phospha	te base)	
POSCO Coating Type		C6-A	C9-A	NS	NM	NT	Remark
ASTM Code		C-5	C-5	C-5	C-5	C-6	
Composition		Organic + Inorganic filler	-				
Thickne	ess(µm)	0.5~1.0	1.2~1.8	0.5~1.0	1.2~1.8	5.0~7.0	
Resistivity	Before SRA	0.5	5.0	3.0	5.0	50	ASTM A 717
(Ωcm²/lam.)	After SRA	0.1	0.5	1.5	2.5	SRA Not Accepted	SRA condition: 750°C×2hr in DX rich gas
Lamination Factor(%)		98.0	98.0	98.0	98.0	97.0	JIS C 2550 1.0Mpa±0.05 in Pressure
Heat	Continuous	Not recogniozed	Not recogniozed	Not recogniozed	Not recogniozed	SRA Not Accepted	155°C×24hr in Air.
resistance	Short	Not recogniozed	Not recogniozed	Not recogniozed	Not recogniozed	SRA Not Accepted	750°C×2hr in DX rich gas
Weathering	(powdering)	Not recogniozed	Not recogniozed	Not recogniozed	Not recogniozed	Not recogniozed	65℃, 95% humidity, 72hr
Adhesion	Before SRA	10 mmø	10 mmø	10 mmø	10 mmø	20 mmø	ISO 1519 Mandrel Pipe bending
Auliesion	After SRA	5B	5B	5B	5B	5B	130 1319 Manufel Fipe bending
Resistance	Change of surface	Not recogniozed	Not recogniozed	Not recogniozed	Not recogniozed	-	R-134a/Freol @15C= 65g/100g
to refrigerants	Change of weight	Not recogniozed	Not recogniozed	Not recogniozed	Not recogniozed	-	(130℃, 21days, 0.45µm filter paper)
Weld	ability	Excellent	Nomal	Good	Nomal	Not allowed	Current : 100~150A Ar 99% flow : 10~20L/min Speed : 0.25~0.50mpm

Note) Please designate surface insulation according to usage. Regarding coating properties, please contact us. The coating thickness and the resistivity is typical value, not guaranteed.

Stress relief annealing is a process to obtain desired magnetic properties of electrical steel sheets by relieving stress generated in the process of shearing and punching. It is conducted at a proper temperature for a certain period of time.

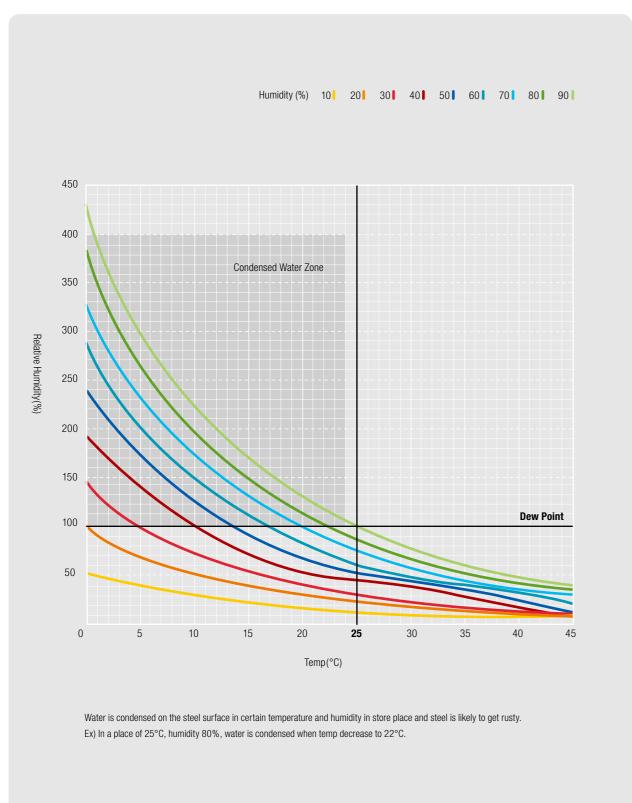
Annealing Temperature

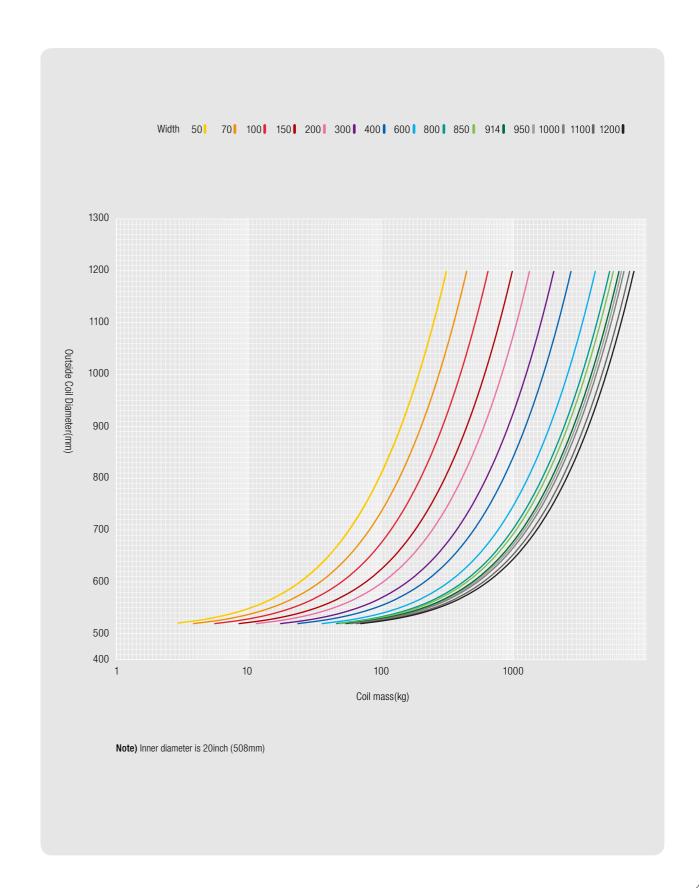
If the annealing temperature is too low, it is difficult to achieve adequate magnetic properties. If the temperature is too high, it may erode surface insulation, cause fusion between layers, and degrade core properties. The optimum annealing temperature to produce desirable magnetic properties is 780°C to 840°C for grain-oriented electrical steel and 750°C to 800°C for non-oriented electrical steel.

Annealing Time

Annealing time means the in-furnace time of materials at the highest temperature during the annealing process. During this time, the materials in the furnace should be heated evenly. The annealing time varies depending upon amount of materials or type of furnace. Generally, the annealing time is between 1.5 to 2.5 hours.

Heating and Cooling Speed


Abrupt heating and cooling must be avoided to prevent any deformation of the iron core. Slow cooling must be applied until it reaches 300~350°C.


Furnace Atmosphere

Furnace atmosphere should be controlled to minimize carburization or oxidization which can diminish magnetic properties. Therefore, a pure nitrogen atmosphere is ideal and the dew point of gas should be maintained as low as possible(below 0°C is adequate). The oil used in shearing and punching should be removed completely. Otherwise both sides of piled-up core will be damaged during the annealing process, deteriorating the work capacity.

POSCO Electrical Steel

Condensed Water on steel surface Graph according to Humidity and Temperature

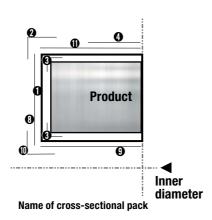
Major international standards

When ordering, please be sure to consult our latest and check the specifications or standards of products may change.

■ Grain-Oriented Electrical Steel

	POSCO	JIS C 2553	ASTM	EN10107
Thickness in. (mm)	(2015) W/kg 17/50	(2012) W/kg 17/50	(2012) W/kg 17/50	(2005) W/kg 17/50
	23PHD080 0.80	23R080 0.80	-	-
	23PHD085 0.85	23R085 0.85	-	M85-23P 0.85
0.0091 (0.23)	23PHD090 0.90	23R090 0.90	23Q054 0.90	M90-23P 0.90
0.0031 (0.23)	23PH 085 0.85	-	-	-
	23PH 090 0.90	23P090 0.90	-	-
	23PH 095 0.95	23P095 0.95	-	M95-23P 0.95
	27PHD085 0.85	-	-	-
	27PHD090 0.90	27R090 0.90	-	M90-27P 0.90
	27PHD095 0.95	27R095 0.95	27Q057 0.96	M95-27P 0.95
0.0106 (0.07)	27PH 090 0.90	-	-	-
0.0106 (0.27)	27PH 095 0.95	27P095 0.95	-	-
	27PH110 1.00	27P100 1.00	27P066 1.11	M103-27P 1.03
	27PG120 1.20	27G120 1.20	27H074 1.24	M120-27S 1.20
	27PG130 1.30	27G130 1.30	-	M130-27S 1.30
	30PHD095 0.95	-	-	-
	30PHD100 1.00	-	-	-
	30PH 100 1.00	30P100 1.00	-	M100-30P 1.00
0.0118 (0.30)	30PH 105 1.05	30P105 1.05	-	M105-30P 1.05
	30PG 120 1.20	30G120 1.20	-	-
	30PG 130 1.30	30G130 1.30	30H083 1.39	M130-30S 1.30
0.0120 /0.25\	35PG145 1.45	35G145 1.45	-	M150-35S 1.50
0.0138 (0.35)	35PG155 1.55	35G155 1.55	35H094 1.57	-

Note) The core loss of POSCO products is the maximum guarantee value at 1.7T and 50Hz


■ Non-Oriented Electrical Steel

	POSCO	JIS C 2552	ASTM	EN10106
Thickness in. (mm)	(2015) W/kg 17/50	(2012) W/kg 17/50	(2012) W/kg 17/50	(2007) W/kg 17/50
	35PN 210 2.10	35A210 2.10	-	-
	35PN 230 2.30	35A230 2.30	-	M235-35A 2.35
	35PN 250 2.50	35A250 2.50	36F145	M250-35A 2.50
0.0138 (0.35)	35PN 270 2.70	35A270 2.70	36F155	M270-35A 2.70
	35PN 300 3.00	35A300 3.00	36F175	M300-35A 3.00
	35PN 330 3.30	35A330 3.30	36F185	M330-35A 3.30
	35PN 360 3.60	35A360 3.60	36F205	-
	35PN 440 4.40	35A440 4.40	-	-
	50PN 250 2.50	50A250 2.50	-	M250-50A 2.50
	50PN 270 2.70	50A270 2.70	-	M270-50A 2.70
	50PN 290 2.90	50A290 2.90	47F165	M290-50A 2.90
	50PN 310 3.10	50A310 3.10	47F180	M310-50A 3.10
	50PN 330 3.30	50A330 3.30	47F190	M330-50A 3.30
	50PN 350 3.50	50A350 3.50	47F200	M350-50A 3.50
0.0197 (0.50)	50PN 400 4.00	50A400 4.00	47F240	M400-50A 4.00
	50PN 470 4.70	50A470 4.70	47F280	M470-50A 4.70
	50PN 600 6.00	50A600 6.00	-	M600-50A 6.00
	50PN 700 7.00	50A700 7.00	47F400	M700-50A 7.00
	50PN 800 8.00	50A800 8.00	47F450	M800-50A 8.00
	50PN 1000 10.00	50A1000 10.00	-	M940-50A 9.40
	50PN 1300 13.00	50A1300 13.00	-	-

Note) The core loss of POSCO products is the maximum guarantee value at 1.5T and 50Hz

Packaging & marking

NO	Name	Meterial
0	PP VCI WRAP	VINYL
2	OUTER RING	STEEL
•	CORNER WRAP	ANTI-RUST BOARD
4	OUTER PROTECT BOARD	STEEL
•	HORIZONTAL BAND	STEEL
6	CENTER BAND	PET
0	VERTICAL BAND	STEEL
8	SIDE BOARD	PLASTIC
•	INNER PROTECT BOARD	PLASTIC
$oldsymbol{\Phi}$	INNER RING	STEEL
•	OUTER PROTECT BOARD	ANTI-RUST BOARD

^{*} Packing Type and materials are changeable.

ELECTRICAL STEEL

Copyright © 2016 by POSCO All rights reserved

Contact Us

POSCO Center 440, Teheran-ro, Gangnam-gu, Seoul, Korea Global Technical Center TEL 82-2-3457-0690 FAX 82-2-3457-1980

Headquarters

6261, Donghaean-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 790-300, Korea

TEL 82-54-220-0114

FAX 82-54-220-6000

Seoul Office

POSCO Center, 440, Teheran-ro, Gangnam-gu, Seoul 135-777, Korea

TEL 82-2-3457-0114

FAX 82-2-3457-6000

Pohang Works

6261, Donghaean-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 790-785, Korea

TEL 82-54-220-0114

FAX 82-54-220-6000

Gwangyang Works

20-26, Pokposarang-gil, Gwangyang-si, Jeollanam-do 545-711, Korea

TEL 82-61-790-0114

FAX 82-61-790-7000

